联合学习(FL),其中多个机构在不共享数据的情况下协作训练机器学习模型正在变得流行。参与机构可能不会平等地做出贡献,有些贡献了更多的数据,一些更好的质量数据或一些更多样化的数据。为了公平地排名不同机构的贡献,沙普利价值(SV)已成为选择方法。精确的SV计算非常昂贵,尤其是在有数百个贡献者的情况下。现有的SV计算技术使用近似值。但是,在医疗保健中,贡献机构的数量可能不是巨大的规模,计算精确的SVS仍然很昂贵,但并非不可能。对于此类设置,我们提出了一种称为Safe的高效SV计算技术(用于使用Enembly的联合学习的Shapley值)。我们从经验上表明,安全计算接近精确SV的值,并且其性能优于当前SV近似值。这在医学成像环境中尤其重要,在医学成像环境中,整个机构之间的广泛异质性猖ramp,并且需要快速准确的数据评估来确定每个参与者在多机构协作学习中的贡献。
translated by 谷歌翻译
深度学习方法实现了对放射学图像进行分类的最新性能,但依赖于需要专家资源密集型注释的大型标签数据集。半监督学习和积极学习都可以用于减轻这种注释负担。但是,对于多标签医学图像分类,将半监督和主动学习方法的优势结合起来的工作有限。在这里,我们介绍了一种基于一致性的新型半监督证据活跃学习框架(CSEAL)。具体而言,我们利用基于证据和主观逻辑理论的预测不确定性来开发一种端到端的综合方法,该方法将基于一致性的半监督学习与基于不确定性的主动学习相结合。我们采用我们的方法来增强四种基于一致性的半监督学习方法:伪标记,虚拟对抗性培训,卑鄙的老师和不老师。对多标签胸部X射线分类任务的广泛评估表明,CSEAL在两个领先的半监督活跃学习基线方面取得了实质性改进。此外,班级分解的结果表明,我们的方法可以大大提高标记样品较少的稀有异常的准确性。
translated by 谷歌翻译
In this paper, we present methods for two types of metacognitive tasks in an AI system: rapidly expanding a neural classification model to accommodate a new category of object, and recognizing when a novel object type is observed instead of misclassifying the observation as a known class. Our methods take numerical data drawn from an embodied simulation environment, which describes the motion and properties of objects when interacted with, and we demonstrate that this type of representation is important for the success of novel type detection. We present a suite of experiments in rapidly accommodating the introduction of new categories and concepts and in novel type detection, and an architecture to integrate the two in an interactive system.
translated by 谷歌翻译
State-of-the-art algorithms for Approximate Nearest Neighbor Search (ANNS) such as DiskANN, FAISS-IVF, and HNSW build data dependent indices that offer substantially better accuracy and search efficiency over data-agnostic indices by overfitting to the index data distribution. When the query data is drawn from a different distribution - e.g., when index represents image embeddings and query represents textual embeddings - such algorithms lose much of this performance advantage. On a variety of datasets, for a fixed recall target, latency is worse by an order of magnitude or more for Out-Of-Distribution (OOD) queries as compared to In-Distribution (ID) queries. The question we address in this work is whether ANNS algorithms can be made efficient for OOD queries if the index construction is given access to a small sample set of these queries. We answer positively by presenting OOD-DiskANN, which uses a sparing sample (1% of index set size) of OOD queries, and provides up to 40% improvement in mean query latency over SoTA algorithms of a similar memory footprint. OOD-DiskANN is scalable and has the efficiency of graph-based ANNS indices. Some of our contributions can improve query efficiency for ID queries as well.
translated by 谷歌翻译
在这项工作中,我们引入了削减(对对比和无监督的分割培训),这是第一个完全无监督的深度学习框架,以进行医学图像细分,从而促进了未经标记或注释的绝大多数成像数据的使用。将医学图像分割成感兴趣的区域是促进患者诊断和定量研究的关键任务。该细分的一个主要限制因素是缺乏标记的数据,因为在注释者之间获得每组新的成像数据或任务的专家注释可能是昂贵,劳动力且不一致的:因此,我们利用基于Pixel-的自学意义图像本身的居中补丁。我们无监督的方法是基于对比度学习和自动编码方面的培训目标。以前的医学图像细分学习方法集中在图像级对比度训练上,而不是我们的图像内贴片级别的方法,或者将其用作一项预训练的任务,此后网络之后需要进一步监督培训。相比之下,我们构建了第一个完全无监督的框架,该框架在以像素为中心的斑点级别上运行。具体来说,我们添加了新颖的增强,补丁重建损失,并引入了一个新的像素聚类和识别框架。我们的模型在几个关键的医学成像任务上取得了改进的结果,这是通过对视网膜图像的地理萎缩(GA)区域进行分割的任务进行了固定的专家注释的验证。
translated by 谷歌翻译
这项研究提出了一个基于移动网格参数化的端到端无监督的差异可变形登记框架。使用此参数化,可以使用其转换雅各布的决定因素和末端速度场的卷曲来建模。变形场的新模型具有三个重要优势。首先,它放松了对成本函数的显式正则化项和相应重量的需求。平滑度隐含在溶液中,从而导致物理上合理的变形场。其次,它通过适用于转换雅各布决定因素的明确约束来保证差异性。最后,它适用于心脏数据处理,因为该参数化的性质是根据​​径向和旋转成分定义变形场。通过在包括2D和3D心脏MRI扫描在内的三个不同数据集上评估拟议方法来研究算法的有效性。结果表明,所提出的框架在生成差异变换的同时优于现有的基于学习的方法和基于非学习的方法。
translated by 谷歌翻译
散射变换是一种基于小波的多层转换,最初是作为卷积神经网络(CNN)的模型引入的,它在我们对这些网络稳定性和不变性属性的理解中发挥了基础作用。随后,人们普遍兴趣将CNN的成功扩展到具有非欧盟结构的数据集,例如图形和歧管,从而导致了几何深度学习的新兴领域。为了提高我们对这个新领域中使用的体系结构的理解,几篇论文提出了对非欧几里得数据结构(如无方向的图形和紧凑的Riemannian歧管)的散射转换的概括。在本文中,我们介绍了一个通用的统一模型,用于测量空间上的几何散射。我们提出的框架包括以前的几何散射作品作为特殊情况,但也适用于更通用的设置,例如有向图,签名图和带边界的歧管。我们提出了一个新标准,该标准可以识别哪些有用表示应该不变的组,并表明该标准足以确保散射变换具有理想的稳定性和不变性属性。此外,我们考虑从随机采样未知歧管获得的有限度量空间。我们提出了两种构造数据驱动图的方法,在该图上相关的图形散射转换近似于基础歧管上的散射变换。此外,我们使用基于扩散图的方法来证明这些近似值之一的收敛速率的定量估计值,因为样品点的数量趋向于无穷大。最后,我们在球形图像,有向图和高维单细胞数据上展示了方法的实用性。
translated by 谷歌翻译
我们提出了一个新的图神经网络(GNN)模块,该模块基于最近提出的几何散射变换的松弛,该变换由图形小波滤波器组成。我们可学习的几何散射(腿)模块可以使小波的自适应调整能够鼓励乐队通道特征在学习的表示中出现。与许多流行的GNN相比,我们的腿部模块在GNN中的结合能够学习长期图形关系,这些GNN通常依赖于邻居之间的平滑度或相似性来编码图形结构。此外,与竞争性GNN相比,其小波先验会导致简化的架构,学到的参数明显少得多。我们证明了基于腿的网络在图形分类基准上的预测性能,以及在生化图数据探索任务中学到的功能的描述性质量。我们的结果表明,基于腿部的网络匹配或匹配流行的GNN,以及在许多数据集上,尤其是在生化域中的原始几何散射结构,同时保留了手工制作的(非学习)几何散射的某些数学特性。
translated by 谷歌翻译
在这里,我们提出了一种称为歧管插值最佳传输流量(MIOFLOW)的方法,该方法从零星时间点上采集的静态快照样品中学习随机,连续的种群动力学。 Mioflow结合了动态模型,流动学习和通过训练神经普通微分方程(神经ode)的最佳运输,以在静态种群快照之间插值,以通过具有歧管地面距离的最佳运输来惩罚。此外,我们通过在自动编码器的潜在空间中运行我们称为Geodesic AutoCododer(GAE)来确保流量遵循几何形状。在GAE中,正规化了点之间的潜在空间距离,以匹配我们定义的数据歧管上的新型多尺度测量距离。我们表明,这种方法优于正常流,Schr \“ Odinger Bridges和其他旨在根据人群之间插值的噪声流向数据的生成模型。从理论上讲,我们将这些轨迹与动态最佳运输联系起来。我们评估了我们的评估使用分叉和合并的模拟数据,以及来自胚胎身体分化和急性髓样白血病的SCRNA-SEQ数据。
translated by 谷歌翻译
歧管散射变换是用于在Riemannian歧管上定义的数据的深度提取器。它是将类似卷积神经网络的操作员扩展到一般流形的第一个例子之一。该模型的初始工作主要集中在其理论稳定性和不变性属性上,但没有为其数值实现提供方法,除非具有预定义的网格的二维表面。在这项工作中,我们根据扩散图的理论提出实用方案,以实现在自然主义系统(例如单细胞遗传学)中产生的流形散射转换,其中数据是一个高度点云,该云是模仿躺在上面的高维点云。低维歧管。我们证明我们的方法对于信号分类和多种分类任务有效。
translated by 谷歌翻译